Reg. No. :

Name :

Third Semester B.Tech. Degree Examination, November 2014 (2013 Scheme)

13.301 : ENGINEERING MATHEMATICS - II
(ABCEFHMNPRSTU)

Time: 3 Hours

Max. Marks : 100

PART-A

Answer all questions. Each question carries 4 marks.

- 1. If \vec{r} is a vector of constant magnitude, show that $\vec{r} \cdot \frac{d\vec{r}}{dt} = 0$.
- 2. Obtain the Fourier series of x cos x in $-\pi < x < \pi$.
- 3. Show that $F[f(ax)] = \frac{1}{a}F(s/a)$ if F[f(x)] = F(s).

- 4. Obtain the partial differential equation by eliminating the arbitrary function 'F' from $F\left(\frac{z}{x+y}\right) = xy + yz + xz$.
- 5. Solve by the method of separation of variables $u(x, t) = e^{-t} \cos x$ with u(x, 0) = 0 and $\frac{\partial u}{\partial t}(0, t) = 0$.

PART-B

Answer one full question from each Module. Each question carries 20 marks.

Module - I

6. a) Find the angle between the directions of the velocity and acceleration vectors at time 't' of a particle with position vector $\vec{r} = (t^2 + 1)\hat{i} - 2t\hat{j} + (t^2 - 1)\hat{k}$.

- b) Evaluate $\int_{C} \vec{F} \times d\vec{r}$ along the curve $x = \cos\theta$, $y = \sin\theta$, $z = 2\cos\theta$ from $\theta = 0$ to $\theta = \frac{\pi}{2}$, given that $\vec{F} = 2y\hat{i} z\hat{j} + x\hat{k}$.
 - c) Evaluate $\iint_S (yz^2\hat{i} + xz^2\hat{j} + 2z^2\hat{k}).d\vec{s}$, where s is the closed surface bounded by the xoy-plane and the upper half of the sphere $x^2 + y^2 + z^2 = a^2$ above this plane.
 - 7. a) Find the value of 'n' if $r^n \bar{r}$ is both solenoidal and irrotational.
- b) Using Green's theorem in a plane evaluate $\int_c (3x^2 8y^2) dx + (4y 6xy) dy$ where 'c' is the boundary of the region defined by the lines x = 0, y = 0, x+y=1.
 - c) Verify Stoke's theorem when $\vec{F} = (2xy x^2)\hat{i} (x^2 y^2)\hat{j}$ and c is the boundary of the region enclosed by the parabolas $y^2 = x$ and $x^2 = y$.

Module - II

8. a) Find the Fourier series expansion of the function.

$$F(x) = x$$
, $0 \le x \le 1$
= 2-x. $1 \le x \le 2$

- b) Using Fourier integral show that $\int_{0}^{\infty} \frac{\lambda \sin \lambda x}{\lambda^2 + k^2} d\lambda = \frac{\pi}{2} e^{-kx} \frac{x > 0}{k > 0}$
- 9. a) Find the Fourier series of F(x) = 1 , -2 < x < 0= e^{-x} , 0 < x < 2
 - b) Find the Fourier cosine transform of $F(x) = e^{-4x}$ and hence deduce that $\int\limits_{0}^{\infty} \frac{\cos 2x}{x^2 + 16} \, dx = \frac{\pi}{2} e^{-8} \, .$

Module - III

- 10. a) Solve the partial differential equation p(1+q) = qz.
 - b) Solve the partial differential equation $z(z^2 + xy)(px qy) = x^4$.
 - c) Solve the partial differential equation $(D^2 + D^2) z = x^2 y^2$.
- 11. a) Solve the partial differential equation by Charpit's method $z^2 = pqxy$.
 - b) Solve the partial differential equation

$$(D^2 - 6DD' + 9D'^2)$$
 $z = e^{3x+4y} + \sin(x+y)$

Module-IV

- 12. a) A tightly stretched string with fixed end points x = 0 and x = I is initially in the position y (x, 0) = k (lx x²) from which it is released at time t = 0. Find the displacement function y (x, t).
 - b) The ends A and B of a rod 10 cm long have the temperatures at 20°C and 40°C until steady-state prevails. The temperature of the ends are changed to 50°C and 10°C respectively. Find the subsequent temperature function u (x, t) at time 't'.
- 13. a) Find the displacement of a string stretched between two fixed points at a distance '2c' apart when the string is initially at rest in equilibrium position and points of the string are given initial velocities 'V' where

$$V = \begin{cases} \begin{array}{c} x \\ c \end{array} & , \ 0 < x < c \\ \\ \frac{2c - x}{c} \end{array} & , \ c < x < 2c \; . \end{cases}$$

b) The equation for the conduction of heat along a bar of length 'l' is $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$. Find an expression for u, if the ends of the bar are maintained at zero temperature and if initially the temperature is T at the centre of the bar and falls uniformly to zero at its ends.